Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38329395

RESUMO

Infections with persistent or latent viruses alter host immune homeostasis and have potential to affect the outcome of concomitant acute viral infections such as influenza A virus (IAV). Gammaherpesviruses establish life-long infections and require an on-going immune response to control reactivation. We have used a murine model of co-infection to investigate the response to IAV infection in mice latently infected with the gammaherpesvirus MHV-68. Over the course of infection, latently infected BALB/c mice showed less weight loss, clinical signs, pulmonary cellular infiltration and expression of inflammatory mediators than naïve mice infected with IAV and had significantly more activated CD8+ T cells in the lungs. Four days after IAV infection, virus spread in the lungs of latently infected animals was significantly lower than in naïve animals. By 7 days after IAV infection latently infected lungs express elevated levels of cytokines and chemokines indicating they are primed to respond to the secondary infection. Investigation at an early time point showed that 24 h after IAV infection co-infected animals had higher expression of IFNß and Ddx58 (RIG-I) and a range of ISGs than mice infected with IAV alone suggesting that the type I IFN response plays a role in the protective effect. This effect was mouse strain dependent and did not occur in 129/Sv/Ev mice. These results offer insight into innate immune mechanisms that could be utilized to protect against IAV infection and highlight on-going and persistent viral infections as a significant factor impacting the severity of acute respiratory infections.


Assuntos
Coinfecção , Gammaherpesvirinae , Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Animais , Camundongos , Humanos , Linfócitos T CD8-Positivos , Camundongos Endogâmicos BALB C
2.
Virology ; 526: 155-164, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390564

RESUMO

IFNγ is a key regulator of inflammatory responses but its role in influenza A virus (IAV) pathogenesis is unclear. Our studies show that infection of mice lacking the IFNγ receptor (IFNγR-/-) at a dose which caused severe disease in wild type 129 Sv/Ev (WT) mice resulted in milder clinical symptoms and significantly lower lung virus titers by 6 days post-infection (dpi). Viral spread was reduced in IFNγR-/- lungs at 2 and 4 dpi. Levels of inflammatory cytokines and chemokines were lower in IFNγR-/- mice at 2 dpi and there was less infiltration of monocyte/macrophage lineage cells than in WT mice. There was no difference in CD4+ and CD8+ T cells and alveolar macrophages in the bronchoalveolar lavage fluid (BALF) at 2 and 4 dpi but by 4 dpi IFNγR-/- mice had significantly higher percentages of neutrophils. Our data strongly suggest that IAV can use the inflammatory response to promote viral spread.


Assuntos
Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/fisiopatologia , Receptores de Interferon/genética , Transdução de Sinais , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/genética , Carga Viral
3.
J Virol ; 90(20): 9263-84, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489273

RESUMO

UNLABELLED: Two alleles of segment 8 (NS) circulate in nonchiropteran influenza A viruses. The A allele is found in avian and mammalian viruses, but the B allele is viewed as being almost exclusively found in avian viruses. This might reflect the fact that one or both of its encoded proteins (NS1 and NEP) are maladapted for replication in mammalian hosts. To test this, a number of clade A and B avian virus-derived NS segments were introduced into human H1N1 and H3N2 viruses. In no case was the peak virus titer substantially reduced following infection of various mammalian cell types. Exemplar reassortant viruses also replicated to similar titers in mice, although mice infected with viruses with the avian virus-derived segment 8s had reduced weight loss compared to that achieved in mice infected with the A/Puerto Rico/8/1934 (H1N1) parent. In vitro, the viruses coped similarly with type I interferons. Temporal proteomics analysis of cellular responses to infection showed that the avian virus-derived NS segments provoked lower levels of expression of interferon-stimulated genes in cells than wild type-derived NS segments. Thus, neither the A nor the B allele of avian virus-derived NS segments necessarily attenuates virus replication in a mammalian host, although the alleles can attenuate disease. Phylogenetic analyses identified 32 independent incursions of an avian virus-derived A allele into mammals, whereas 6 introductions of a B allele were identified. However, A-allele isolates from birds outnumbered B-allele isolates, and the relative rates of Aves-to-Mammalia transmission were not significantly different. We conclude that while the introduction of an avian virus segment 8 into mammals is a relatively rare event, the dogma of the B allele being especially restricted is misleading, with implications in the assessment of the pandemic potential of avian influenza viruses. IMPORTANCE: Influenza A virus (IAV) can adapt to poultry and mammalian species, inflicting a great socioeconomic burden on farming and health care sectors. Host adaptation likely involves multiple viral factors. Here, we investigated the role of IAV segment 8. Segment 8 has evolved into two distinct clades: the A and B alleles. The B-allele genes have previously been suggested to be restricted to avian virus species. We introduced a selection of avian virus A- and B-allele segment 8s into human H1N1 and H3N2 virus backgrounds and found that these reassortant viruses were fully competent in mammalian host systems. We also analyzed the currently available public data on the segment 8 gene distribution and found surprisingly little evidence for specific avian host restriction of the B-clade segment. We conclude that B-allele segment 8 genes are, in fact, capable of supporting infection in mammals and that they should be considered during the assessment of the pandemic risk of zoonotic influenza A viruses.


Assuntos
Especificidade de Hospedeiro/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Mamíferos/virologia , Virulência/genética , Células A549 , Alelos , Animais , Aves/virologia , Linhagem Celular , Linhagem Celular Tumoral , Cães , Células HEK293 , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Filogenia , Vírus Reordenados/genética , Proteínas Virais/genética , Replicação Viral/genética
4.
Proc Natl Acad Sci U S A ; 111(17): 6401-6, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733924

RESUMO

There is a need for new approaches for the control of influenza given the burden caused by annual seasonal outbreaks, the emergence of viruses with pandemic potential, and the development of resistance to current antiviral drugs. We show that multivalent biologics, engineered using carbohydrate-binding modules specific for sialic acid, mask the cell-surface receptor recognized by the influenza virus and protect mice from a lethal challenge with 2009 pandemic H1N1 influenza virus. The most promising biologic protects mice when given as a single 1-µg intranasal dose 7 d in advance of viral challenge. There also is sufficient virus replication to establish an immune response, potentially protecting the animal from future exposure to the virus. Furthermore, the biologics appear to stimulate inflammatory mediators, and this stimulation may contribute to their protective ability. Our results suggest that this host-targeted approach could provide a front-line prophylactic that has the potential to protect against any current and future influenza virus and possibly against other respiratory pathogens that use sialic acid as a receptor.


Assuntos
Influenza Humana/metabolismo , Influenza Humana/prevenção & controle , Engenharia de Proteínas , Receptores Virais/metabolismo , Animais , Peso Corporal , Quimiocinas/metabolismo , Cães , Humanos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Receptores de Superfície Celular/metabolismo , Análise de Sobrevida
5.
Open Virol J ; 7: 28-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23493233

RESUMO

A potential target for the development of universal vaccine strategies against Influenza A is the M2 protein - a membrane protein with a highly conserved extracellular domain. In this study we developed engineered T-cell receptors, by fusing M2-specific antibody sequences with T-cell receptor transmembrane and signaling domains to target influenza infected cells. When expressed on T-cells, these novel T-cell receptors (chimeric antigen receptors - CARs) are able to recognize specific antigens on the surface of target cells via an MHC-independent mechanism. Using an existing monoclonal antibody (14C2) specific for the M2 ectodomain (M2e), we generated an M2-specific CAR. We tested the specificity of this M2 CAR in vitro by measuring the activation of T-cells in response to M2-specific peptides or M2-expressing cell lines. Both Jurkat T-cells and peripheral blood mononuclear cells expressing the M2-specific CAR responded to specific antigen stimulation by upregulating NFAT and producing γ-interferon. To test whether the M2-specific CAR are effective at recognizing influenza infected cells in vivo we used an established BALB/c murine infection model. At day 4 post-infection, when M2 CAR expressing splenocytes could be detected in the lung, the Influenza A/WSN/33 virus titre was around 50% of that in control mice. Although the lung virus titre later increased in the treated group, virus was cleared in both groups of mice by day 8. The results provide support for the development of M2e as a target for cell mediated immunotherapy.

6.
J Gen Virol ; 93(Pt 5): 980-986, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22258859

RESUMO

The emergence of drug-resistant strains of influenza virus has catalysed a search for new antiviral agents to supplement or replace existing drugs. Following the success of the human immunodeficiency virus entry blocker Enfuvirtide, there has been a resurgence of interest in peptide-based antivirals. In this paper, we report on the discovery of a novel family of peptides (FluPep, FP) that function as inhibitors of influenza A virus infection. The prototype peptide (FP1, also known as Tkip) interacts with haemagglutinin and inhibits the binding of the virus to cell membranes. Using a plaque-reduction assay, we have demonstrated that a variety of influenza A virus subtypes (including H1N1, H3N2 and H5N1) are inhibited by FluPep and its derivatives at nanomolar concentrations. By truncating FluPep we have identified a minimal sequence of 6 aa that binds to haemagglutinin and inhibits infection. Using a mouse model of intranasal influenza virus infection, we observed potent inhibition of virus infection when peptide is given at the time of virus administration. These data indicate that FluPep is a highly effective anti-influenza agent with the potential to translate to the clinic.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Peptídeos/farmacologia , Ligação Viral/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Ensaio de Placa Viral
7.
J Gen Virol ; 93(Pt 4): 840-849, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22190016

RESUMO

The influenza A virus genome comprises eight segments of negative-sense RNA that encode up to 12 proteins. RNA segment 2 encodes three proteins, PB1, PB1-F2 and N40, that are translated from the same mRNA by ribosomal leaky scanning and reinitiation. PB1 is a subunit of the trimeric viral RNA polymerase. PB1-F2 has been reported to be a potential virulence factor, and has been shown to be involved in a number of activities including induction of apoptosis, regulation of virus replication and modulation of the immune response. No function has yet been ascribed to N40, which represents an N-terminally deleted form of PB1. Previous studies on PB1-F2 function mainly used viruses genetically engineered to prevent PB1-F2 expression by mutation of the PB1-F2 start codon. However, ablation of the start codon was shown to increase the expression level of the downstream protein N40. In the present study, we generated recombinant A/WSN/33 viruses carrying different combinations of PB1-F2- and N40-knockout mutations. Overexpression of N40 in a PB1-F2-deficient background had a detrimental effect on virus growth in vitro and in vivo. However, ablation of PB1-F2 or N40 expression individually was not disadvantageous for the virus. Primer-extension analyses revealed an increase in vRNA production by viruses that overexpressed N40. Our data suggest that the observed attenuation of mutant viruses in vitro and in vivo results from these changes in transcription and replication.


Assuntos
Vírus da Influenza A/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cães , Feminino , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/fisiologia , Genoma Viral/genética , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Infecções por Orthomyxoviridae/virologia , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas Virais/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia
8.
PLoS One ; 4(8): e6492, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19652715

RESUMO

BACKGROUND: Detection, isolation, and identification of individual virus infected cells during long term infection are critical to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded reporter genes. We have designed a novel Cre recombinase (Cre)-based murine system to overcome these problems, and thereby enable tracking and isolation of individual in vivo infected cells. METHODOLOGY/PRINCIPAL FINDINGS: Murine gammaherpesvirus 68 (MHV-68) was used as a prototypic persistent model virus. A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication, producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP) was infected with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow. CONCLUSIONS/SIGNIFICANCE: The use of this novel Cre-based virus/mouse system allowed identification of individual latently infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections.


Assuntos
Gammaherpesvirinae/isolamento & purificação , Infecções por Herpesviridae/virologia , Integrases/metabolismo , Animais , Linfócitos B/virologia , Sequência de Bases , Southern Blotting , Linhagem Celular , Cricetinae , Citometria de Fluxo , Gammaherpesvirinae/genética , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Recombinação Genética
9.
J Gen Virol ; 87(Pt 4): 803-807, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16528028

RESUMO

Murine gammaherpesvirus 68 (MHV-68) encodes a set of unique genes, M1, M2, M3 and M4, and eight non-translated tRNA-like molecules that are thought to be important in virus-host interactions and latent infection. The M4 gene is predicted to encode a novel secreted protein. To investigate the role of M4 in viral pathogenesis, a mutant MHV-68 that did not express M4 was constructed and its replication was characterized in vitro and in vivo. Virus replication was identical to the wild type in vitro and no difference could be detected in virus replication in the lung following intranasal infection. However, in the spleen, virus deficient in M4 expression was severely attenuated in the establishment of latency. These results indicate a critical role for M4 in MHV-68 pathogenesis.


Assuntos
Gammaherpesvirinae/patogenicidade , Regulação Viral da Expressão Gênica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral , Animais , Linhagem Celular , Cricetinae , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Baço/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...